skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hernandez, Elijuah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, a series of 8(meso)-pyridyl-BODIPYs (2-pyridyl, 3-pyridyl, and 4-pyridyl) and their 2,6-substituted derivatives were synthesized and their structure and photophysical properties were studied both experimentally and computationally. One of the main observed trends was that the 2-pyridyl-BODIPYs were consistently less fluorescent than their 3-pyridyl and 4-pyridyl analogs, regardless of the 2,6-substituents. Herein, we extend our previous computational studies and model not only the ground but also the excited states of the entire series of previously synthesized meso-pyridyl-BODIPYs with the aim of explaining the observed differences in the emission quantum yields. To better understand the trends and the effect of 2- and 2,6-substitution on the photophysical and electron-density-related properties, we also model the ground and excited states of BODIPYs that were not synthesized experimentally, however represent a logical part of the series. We calculate a variety of molecular properties and propose that the experimentally observed low quantum yields for all 2-pyridyl-BODIPYs could be due to the very flat potential energy surfaces with respect to the rotation of the 2-pyridyl ring in the excited states, and the stability of a non-planar and significantly less fluorescent meso-2-pyridyl-BODIPY structure. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025